

Review Article

Free Radicals and Antioxidants in Diseased Neonates

Hosny M.A. El-Masry^{*1} and Alaa-eldin A.H. Mahmoud^{2*}

DOI: 10.21608/anj.2020.131987

*Correspondence

Professor of Pediatrics and Neonatology, Faculty of Medicine, Al-Azhar University (Assiut), Egypt Email: hosny5219672000@yahoo.com

Abstract

Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions.

Key words: free radicals, oxidants, antioxidants

Introduction

Oxidative Stress: There is a crucial balance between free radical production and antioxidant defense mechanisms. While bodies human are producing energy, molecules with one or more unpaired electrons in their outer shell, called free radicals, occur in the respiratory chain, phagocytosis, prostaglandin synthesis, and the cytochrome P450 system [1, 2]. Free radicals are formed from molecules via the breaking of a chemical bond such that each fragment keeps one electron, via cleavage of radicals to give other radicals and via redox reactions. Current known free radicals are hydroxyl (OH•), superoxide (SO), nitric oxide (NO \bullet), nitrogen dioxide (NO₂ \bullet), peroxyl (ROO•), and lipid peroxyl (LOO•). In addition, hydrogen peroxide (H_2O_2) , ozone (O_3) , singlet oxygen $({}^1O_2)$, hypochlorous acid (HOCl), nitrous acid (HNO₂), peroxynitrite (PN), dinitrogen trioxide (N₂O₃), and lipid peroxide are not free radicals but are called oxidants, because they can easily lead to free radical reactions in organisms. Reactive oxygen species (ROS) include both free radicals and non-free radical oxygenated molecules. Reactive nitrogen, iron, copper, and sulfur species are also encountered. Oxidative stress and imbalance of the redox

considered a contributing factor to the pathogenesis and pathophysiology of many health problems, either as a source or as an outcome [1, 3]. Overexpression of oncogenes and generation of mutagen compounds or inflammation leads to some diseases such as cancer, and neurodegeneration may be affected by the involvement of ROS/RNS species [1]. ROS and RNS are generated from either endogenous or exogenous sources. Endogenous free radicals are produced from immune cell activation, inflammation, mental stress. excessive exercise, ischemia, infection, cancer, and aging. Exogenous ROS/RNS is caused by air and water pollution; cigarette smoke; alcohol; heavy or transition metals; certain drugs including cyclosporine, tacrolimus, gentamycin, and bleomycin; industrial solvents such as asbestos; cooking (smoked meat, used oil, and fat); and radiation, after penetration into the body by different routes, these exogenous compounds are decomposed or metabolized into free radicals [3, 4]. However, free radicals are not always harmful; at low or moderate concentrations, ROS and RNS are necessary for the

reaction can be originated by those radical

species. ROS/reactive nitrogen species-

(RNS-) induced damage in oxidative stress is

maturation process of cellular structures and play an important role in the host defense system. Indeed, phagocytes (neutrophils, macrophages, and monocytes) release free radicals to destroy invading pathogenic microbes as part of the body's defense mechanism against disease. Free radicals also induce proinflammatory cytokines [4].

Antioxidants are inhibitors of oxidation, either produced endogenously or received from exogenous sources. The role of antioxidants is to neutralize an excess of free radicals, to contribute to disease prevention, and to protect the cells against the toxic effects of oxidants, such as deoxyribonucleic acid (DNA) mutations and malignant transformations [1, 3]. It was reported that the use of antioxidants greatly enhances immune cell function, helping to control many bacterial and viral infections, reverse the imbalance between oxidants and antioxidants at the site of oxidant injury, and prevent progressive tissue damage [5]. Antioxidants are suggested for treatment of HIV, hepatitis C, Japanese encephalitis, and tuberculosis with anti-inflammatory features [6–9]. Currently known endogenous antioxidants include superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione reductase. peroxiredoxin,

thioredoxin reductase. glutathione. flavonoids, bilirubin, uric acid, melatonin, thiols, reduced coenzyme Q, alpha-lipoic acid, endogenous organic selenium, and the metal-binding proteins transferrin, ferritin, lactoferrin, ceruloplasmin, and albumin [10, 11]. Exogenous antioxidants include vitamin C. vitamin E. carotenoids. stilbene antioxidants, phenolic acids, flavonoids, oil lecithin, acetylcysteine, exogenous selenium, zinc, magnesium, and copper [1]. All of those molecules seem to be probable targets in the management of oxidative stressinduced diseases.

Oxidative stress, which occurs when there are more toxic free radicals produced than neutralized can be by antioxidant mechanisms, is an increasingly important among biological researchers. topic Oxidative degradation of lipids yields malondialdehyde, 4-hydroxynonenal, and isoprostanes, from unsaturated fatty acids. Protein damage may occur with thiol oxidation. carbonylation, side-chain oxidation, fragmentation, unfolding, and misfolding, resulting in loss of backbone and the side chain of proteins. ROS damage nucleic acids, and 8-hydroxydeoxyguanosine is an index of DNA damage [12]. Oxidative injury occurs when excessive production of ROS/RNS emerges and cannot be counteracted by the antioxidants [13]. The imbalance between the oxidative and antioxidative systems may trigger some factors that cause oxidative damage in the cell [14].

Oxidative Stress-Related Disease in Preterm and Newborn Infants

Periventricular Leukomalacia

The incidence PVL of based on ultrasonographic findings ranges from 5% to 15% in very-low-birth-weight infants [15]. Neuropathologic evidence of PVL is found in 25% to 75% of very-low-birth-weight infants who die. PVL refers to injury to cerebral white matter that occurs in a characteristic distribution and consists of periventricular focal necrosis, with subsequent cystic formation, and more diffuse cerebral white matter injury. Prevention of PVL will require new insights into its pathogenesis. The pathogenesis of this disease is related to the following factors: (i) Incomplete development of the vascular supply in the cerebral white matter. (ii) A maturationdependent impairment in the regulation of cerebral blood flow underlying a propensity to ischemic injury to cerebral white matter. (iii) Oligodendroglial precursor cells being the major cellular target of maturation-

dependent vulnerability in PVL.(iv)Maternal/fetal inflammation or infection causing oxidative stress. (v) Elevation in extracellular glutamate causing toxicity to oligodendroglial precursors [15]. It has been shown that attacks by radicals, deficiency of antioxidant defenses, and active acquisition of iron derived from hemorrhage contribute to the pathological processes of disease during oligodendroglial differentiation. In consequence, deadly ROS and apoptotic oligodendroglial death may be the underlying reasons for PVL [16].

Respiratory Distress Syndrome

More than half of extremely-low-birthweight (<1 kg) newborns will have some type of respiratory distress, and in that population RDS is the most common diagnosis (50.8%). The main factor for RDS is prematurity [17]. The pathophysiological factors include the Insufficient/dysfunctional following: (i) surfactant resulting in collapsed alveoli, ventilation-perfusion atelectasis. mismatching, and subsequent hypoxemia and respiratory acidosis. (ii) Sudden increase in oxygen supply after birth leading to an overproduction of ROS and depletion of Hyperoxygenation antioxidants. (iii), destroying vascular the and alveoli endothelial cells. Oxidant (iv) stress

promoting expression of cytokines and the inflammatory process (interleukin-6, interleukin-8, and tumor necrosis factor-α) [18].

Bronchopulmonary Dysplasia

Damage starts with the first postnatal breaths in lungs of premature infants. Infants weighing less than 1500 g at birth have BPD ranges between 15% and 50%, and ranges decrease by gestational age [19]. The pathogenesis of BPD is complex. Some defined factors include the following: (i) reduced alveolar volume. (ii) Deficiency of surfactant. (iii) Immature extracellular matrix (iv) Inflammation unrelated to infection. (v) Oxygen free radicals produced after exposure to oxygen. (vi) Oxidative stress activating inflammatory cells and increasing proinflammatory cytokines. (vii) Oxidative stress causing injury to the respiratory tract epithelium and inactivating surfactant [19]. (viii) High tidal volume positive-pressure ventilation producing inflammation. (ix) PDA with increased pulmonary blood flow triggering the inflammatory cascade and stimulating neutrophil margination and activation in the lung [18].

Retinopathy of Prematurity

ROP, a proliferative retinopathy affecting premature infants, continues to be a leading

cause of lifelong visual impairment among children in the developed countries. ROP causes visual loss in 1300 children and severe visual impairment in 500 children each year in the United States alone. The overall incidence of ROP is 0.17%, but it is nearly 16% for premature infants [20]. Basic research into the pathogenesis of ROP contributes to further understanding of retinal development, angiogenesis, and intraocular neovascularization [20]. Currently known ROP pathogenetic factors after birth by hyperoxia include the following:(i)Inhibition of retinal vascularization.(ii)Loss of the nutrients and growth factors at the maternalfetal interface.(iii)Stopped blood vessel growth, with subsequent hypoxia because of retinal maturation and increasing metabolic demand.(iv)The hypoxic retina stimulating expression of the oxygen-regulated factors that stimulate retinal neovascularization by using erythropoietin and vascular endothelial growth factor [21]. (v) Oxygen fluctuations inducing cells to produce NADPH oxidase, which causes increased ROS as well as apoptosis of endothelial cells, which contribute to avascular retina [21].

Necrotizing Enterocolitis

The incidence of NEC is approximately 1 per 1000 live births. For infants under 1500 g,

the incidence increases to between 2.3% and 12%. Both the incidence and case fatality rate of NEC are inversely correlated with birth weight; about 30% of babies <1500 g with NEC will not survive [22]. Pathogenetic of NEC include factors the following:(i)Bacterial lipopolysaccharides increasing inducible nitroxide synthase activation in the enterocytes of neonates, ROS triggering production [17].(ii)Multifactorial etiologies, including inflammation, ischemia, and cytokines (tumor necrosis factor- α , interleukin-6) producing a high level of free radicals [22, 23].(iii)Local ischemia of the intestinal tissue and reperfusion triggering production of reactive species through some enzymes such as xanthine oxidase [22].(iv)ROS and free radicals contributing to the disruption of the barrier.(v)Platelet-derived immature gut growth factor [23].

Patent Ductus Arteriosus

PDA, which has an incidence of 1 per 2000 in term neonates, is the persistence of the fetal communication between the descending aorta and left pulmonary artery. This congenital defect allows blood to bypass the fetal lungs and be directed into the descending aorta to supply structures below this region. It usually closes soon after birth

under the physiologic effects of elevated oxygen level. Defects can range in size from so small as to be undetectable to large enough to cause volume loading of the left ventricle and pulmonary hypertension. PDA is seen more frequently (20% to 60%) in preterm infants [13], particularly those born at <30 weeks' gestation. Further studies showed that the ductus arteriosus is affected by changes in PO_2 , with changes in the redox state producing ROS. Intrauterine hypoxia maintains the patency of the ductus arteriosus. However, at the time of birth, ROS increases when PO₂ changes from fetal to neonatal levels. In addition to this, hemodynamically significant PDA may cause hypoperfusion of organs, which can cause diseases such as NEC, BPD, and acute renal insufficiency. Hypoperfusion, ischemia, and chronic hypoxia lead to the production of oxygen radicals [24].

Congenital Malformation

Congenital anomalies are important causes of childhood death, chronic illness, and disability all over the world and they may have a significant impact on individuals, families, healthcare systems, and societies. It is estimated that 276,000 newborns die in the first month of life every year from congenital anomalies. The most common severe congenital anomalies are heart defects, neural tube defects, and trisomy 21. Although congenital anomalies may be genetic, infectious, nutritional, or environmental in origin, most often it is difficult to identify the exact causes [25]. It was stated in recent reports that there may be an association between oxidative stress and congenital malformations [26]. Oxidative stress has been defined as harmful radicals attacking biological molecules such as DNA, lipids, and proteins [25].

Intrauterine Growth Restriction

IUGR is a complication of pregnancy, often described when the fetus is estimated to be small for gestational age [16]. The reported incidence of IUGR ranges between 3% and 7%. IUGR is most probably a consequence of placental ischemia/hypoxia [27]. Some mechanisms involving IUGR and oxidative stress are as follows:(i)High metabolic demand and elevated requirements for tissue oxygen in pregnancy.(ii)Increased rate of production of ROS, oxidative stress, and peroxidation lipid with compared nonpregnant women.(iii)Uncontrolled production of lipid peroxides resulting in additional oxidative stress.(iv) Placental ischemia/hypoxia resulting in the release of products into the maternal circulation, which triggers preeclampsia as well as IUGR .(v)Development during the late second or third trimester when the mother's antioxidant capacity to cope is limited.(vi)Increased antioxidants such as vitamin E. ceruloplasmin, and erythrocyte thiols and increased iron-binding capacity; otherwise, serum iron concentrations progressively decrease.(vii)Insufficient increase in antioxidants trying to counter the increase in oxidative stress and lipid peroxidation. In conclusion, damage to cell integrity, cell membrane function, organelle membranes, and protein synthesis is a major cause of maternal and fetal morbidity [28].

Diagnosis of Oxidative Stress-Related Neonatal Disease

There are some studies of the diagnosis of oxidative stress-related neonatal disease in both humans and animals. El-Mazary et al. [29] showed that neonates with hypoxicischemic encephalopathy had lower serum selenium levels than normal healthy neonates. Mukhopadhyay et al. [30] reported that levels of antioxidants such as vitamin C and glutathione are reduced, and levels of malondialdehyde serum and protein carbonyl are different, in children with congenital malformation and healthy children. Kumar et al. [31] claimed that increased levels of plasma and cerebrospinal fluid malondialdehyde are related to perinatal asphyxia.

To evaluate oxidative stress markers in neonates with IUGR, antioxidant enzyme (SOD, catalase, and glutathione peroxidase) activities and levels of antioxidants were measured. It was found that there were significantly lower levels of enzyme activities in the IUGR group [28, 32] than in a control group. Cancelier et al. [33] demonstrated that thiobarbituric acid-reactive substances, which are an oxidative stress marker, were significantly higher in cord blood of infants with neonatal sepsis. Lista et al. [34] noted that lung inflammatory response in preterm infants with RDS may be assessed by measuring proinflammatory cytokines in tracheobronchial aspirate fluid; if there is inflammation; lungs are more susceptible to oxidant stress [32]. In 2015, Tataranno et al. [35] reported that discovery and validation of specific plasma oxidative stress markers of neonatal brain injuries give idea of neonatal neuroprotection. an According to the authors, prostanoids and nonprotein bound iron could be used as specific plasma oxidative biomarkers reflecting oxidative stress injury to neuronal cells. Eventually Marseglia et al. [36] concluded that visfatin (adipocytokine involved in oxidative stress and an important mediator of inflammation that induces doseproduction of dependent both proinflammatory and anti-inflammatory cytokines) could be a new marker of oxidative stress in preterm newborns.

Therapeutic Approach to Oxidative Stress-Related Neonatal Disease

Supplementation with enzymatic and/or nonenzymatic antioxidants has been experimented with, but the results were mixed [22]. It was reported that an antioxidant supply can prevent oxidant stress-related disease, support the immune systems of neonates, reduce stillbirths, and enhance neonatal vitality [17]. Many potential therapeutic antioxidants have already been investigated, particularly in diseases of newborns. It was shown in some reports that oxidative stress-mediated intestinal injury was reduced by the addition of SOD, glutathione peroxidase, and Nacetylcysteine, which reduces concentrations of intestinal tissue tumor necrosis factor- α via its anti-inflammatory and antioxidant properties [37]. In various studies, some therapies including hyperbaric oxygen, medical ozone, and enteral glutamine alone or in combination with arginine have shown

favorable effects on NEC by modulating antioxidative defense mechanisms. Surech et al. [38] concluded that intratracheal administration of recombinant human copper zinc SOD caused an improvement in the antioxidant activity of some enzymes in premature infants. Melatonin and its metabolites are strong antioxidants. It was demonstrated that melatonin reduces all aspects of the ensuing damage in the ischemia and subsequent reperfusion model of the heart, kidney, liver, intestine, and brain in cases of excessive ROS [22]. Melatonin for PVL has been studied in animal models, and agomelatine and melatonin seem to be likely neuroprotective agents for the prevention of PVL [16].

Resveratrol (a phytoalexin synthesized by some plants) and epicatechin (a green tea extract) are considered new treatment modalities for ROP. Resveratrol as a nitric oxide mechanism modulator and caffeic acid were investigated in the pathogenesis of retinal neovascularization and some effects beneficial for the prevention of ROP were found. Vitamin E. D-penicillamine, intratracheal recombinant human SOD, and allopurinol are used for the treatment and prevention of ROP [39]. Paraoxonase-3 has been identified as an antioxidant that is

systemically upregulated in late gestation of human fetuses. For neonatal brain injury, there are possible agents such as vitamins C and E, inhibitors of nitric oxide synthase, allopurinol, erythropoietin, albumin, docosahexaenoic acid. deferoxamine, prostaglandin inhibitors, magnesium sulfate, N-acetylcysteine, melatonin, lutein, and omega-3 polyunsaturated fatty acid [40, 41]. Endotracheal administration of recombinant human SOD, melatonin, and surfactant replacement can reduce the lung injury in preterm newborns receiving mechanical ventilation for RDS [42]. Exogenous antioxidants such as vitamins A and E and recombinant human SOD are considered able to prevent BPD [40].

Future Directions

New Human Oxidative Stress Source: Wireless Local Area Networks

New studies have started to focus on the relationship between oxidative stress and wireless local area networks (WLANs). Nowadays, WLANs are everywhere, such as workplaces, homes, and public places. Scientists are investigating possible biological effects of exposure to WLAN signals because of the increased usage [43]. There are a few human studies in addition to animal studies. In animal investigations, it

has been shown that the oxidative stress of organs such as the brain, liver, testes, ovary, kidney, and eye increase with exposure to WLANs, especially in pregnant or newborn animals [44, 45]. Human studies have generally focused on fertility [46].

Genetic Mutations

Gene mutations related to oxidative stress have been discovered. Tuxworth et al. [47] showed that the lack of CLN3 function leads to a failure to control the response to oxidative stress and this causes juvenile neuronal ceroid lipofuscinosis (also known as Batten disease), a disease characterized by neuronal degeneration. In one study, preterm infants born by cesarean delivery were compared with preterm infants born by vaginal delivery in terms of H2O2-induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells [48]. The authors reported that preterm infants born by cesarean delivery repair oxidative DNA damage more slowly than preterm infants born by vaginal delivery. It is currently unknown how gene expression is affected; however, there are some hypotheses. Schlinzig et al. [49] observed significantly higher global DNA methylation in white blood cells of newborns delivered by

section. and physiological cesarean hypoxemia during vaginal delivery was conducted to increase antioxidant defenses, whereas in the normoxemic planned cesarean section there might be a slower cell cycle, possibly favored by prenatal administration of corticosteroids to the mother, or there could be a different regulation of DNA repair enzymes [48]. Decordier et al. [50] found that H_2O_2 repair capacity and chromosome/genome mutations in newborns are different from those in adults. They found no genotype with a significant effect on DNA repair capacity for the introduction of chromosome/genome mutations by oxidative However, maternal antioxidant stress. during supplementation pregnancy is important for protecting newborns against oxidative DNA damage [50].

Conclusion

Neonatal tissues are especially sensitive to oxidative damage because of the rapidly growing nature of their tissues, which makes them vulnerable to the harmful effects of free radicals. However, there are still gaps in our knowledge of the potential role of oxidative injury in the pathogenesis of neonatal diseases. Moreover, there are few publications on validated roles of oxidative stress biomarkers and antioxidants and their protective roles in this field. New studies should more extensively investigate the diagnostic and therapeutic value of various oxidative stress biomarkers and antioxidants to reduce oxidative tissue injury to developing newborns

Conflict of interest

Authors declare they have no conflict of interest **Author's details**

¹Professor and Head of Pediatrics and Neonatology, Al-Azhar University, Assiut, Egypt

²Assistant Professor of Pediatrics and Neonatology, Al-Azhar University, Assiut, Egypt

Date received: 3rd December 2020, accepted 24th December 2020.

References

- Kim, S.J.; Port, A.D.; Swan, R.J.; Campbell, P.; Chan, R.V.P.; Chiang, M.F. Retinopathy of prematurity: A review of risk factors and their clinical significance. Surv. Ophthalmol. 2018, 63, 618–637.
- Fierson, W.M. Screening examination of premature infants for retinopathy of prematurity. Pediatrics 2018, 142, e20183061.
- Tran, K.D.; Cernichiaro-Espinosa, L.A.; Berrocal, A.M. Management of retinopathy of prematurity-use of anti-

VEGF therapy. Asia-Pacific J. Ophthalmol. 2018, 7, 56–62.

- Ludwig, C.A.; Chen, T.A.; Hernandez-Boussard, T.; Moshfeghi, A.A.; Moshfeghi, D.M. The epidemiology of retinopathy of prematurity in the United States. Ophthalmic Surg. Lasers Imaging Retin. 2017, 48, 553–562.
- Ying, G.S.; Bell, E.F.; Donohue, P.; Tomlinson, L.A.; Binenbaum, G. Perinatal risk factors for the retinopathy of prematurity in postnatal growth and rop study. Ophthalmic. Epidemiol. 2019, 26, 270–278.
- 6. Banjac, L.; Banjac, G.: Kotur-Stevuljević, J.: Spasojević-V.; Kalimanovska, Gojković, T.: Bogavac-Stanojević, N.; Jelić-Ivanović, Z.; Banjac, G. **Pro-oxidants** and antioxidants in retinopathy of prematurity. Acta Clin. Croat. 2018, 57, 458-463.
- B. Sharma, "Oxidative stress in HIV patients receiving antiretroviral therapy," Current HIV Research, 2014; 12(1): pp. 13–21.
- U. Z. Paracha, K. Fatima, M. Alqahtani et al., "Oxidative stress and hepatitis C virus," Virology Journal, 2013. 10: 251.

- Y. Zhang, Z. Wang, H. Chen, Z. Chen, and Y. Tian, "Antioxidants: potential antiviral agents for Japanese encephalitis virus infection," International Journal of Infectious Diseases, 2014; 24: 30–36
- 10. A. Rahal, A. Kumar, V. Singh et al.,
 "Oxidative stress, prooxidants, and antioxidants: the interplay," BioMed Research International, 2014, Article ID 761264, 19 pages.
- 11. L. Marseglia, G. D'Angelo, S. Manti et al., "Oxidative stress-mediated aging during the fetal and perinatal periods," Oxidative Medicine and Cellular Longevity. 2014; Article ID 358375, 8 pages.
- J. Baek and M. G. Lee, "Oxidative stress and antioxidant strategies in dermatology," Redox Report, 2016.
- 13. N. Demir, İ. Ece, E. Peker et al., "Impact of patent ductus arteriosus and subsequent therapy with ibuprofen on the release of S-100B and oxidative stress index in preterm infants," Medical Science Monitor, 2014; 20: pp. 2799–805
- 14. P. Sapieha, J.-S. Joyal, J. C. Rivera et al.,
 "Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life," The

Journal of Clinical Investigation, 2010; 120(9),pp. 3022–32

- 15. Centres for Disease Control and Prevention, National Prematurity Awareness Month. 2015, <u>http://www.</u> <u>cdc. gov/ features/prematurebirth/</u>.
- 16. World Health Organization (WHO) Feeding of Very- Low- Birth-Weight Infants, 2015, <u>http://www.who.</u> <u>int/elena/titles/ feeding vlbw_ infants/en/.</u>
- M. Mutinati, M. Pantaleo, M. Roncetti,
 M. Piccinno, A. Rizzo, and R. L. Sciorsci, "Oxidative stress in neonatology: a review," Reproduction in Domestic Animals, 2014; 49 (1): pp.7–16
- 18. E. Gitto, R. J. Reiter, S. P. Cordaro et al., "Oxidative and inflammatory parameters in respiratory distress syndrome of preterm newborns: beneficial effects of melatonin," American Journal of Perinatology, 2004; 21(4): pp. 209–216.
- S. Aversa, L. Marseglia, S. Manti et al., "Ventilation strategies for preventing oxidative stress-induced injury in preterm infants with respiratory disease: an update," Paediatric Respiratory Reviews, 2016; 17: Pp. 71–79.
- 20. Joseph J. Volpe, MD. Oxidative Stress Markers and the Retinopathy of Prematurity J. Clin. Med.2020, 9(9),

2711 <u>https://doi.org/10.3390/jcm90927</u> 11

- 21. J. R. Martin, A. A. Fanaroff, and C. M.
 Walsh, Fanaroff and Martin's NeonatalPerinatal Medicine, Saunders,
 Philadelphia, Pa, USA, 10th edition, 2015.
- L. Marseglia, G. D'Angelo, S. Manti et al., "Oxidative stress-mediated damage in newborns with necrotizing enterocolitis: a possible role of melatonin," American Journal of Perinatology, 2015; 32 (10): pp. 905–909,
- 23. S. Perrone, M. L. Tataranno, A. Santacroce, S. Negro, and G. Buonocore, "The role of oxidative stress on necrotizing enterocolitis in very low birth weight infants," Current Pediatric Reviews, 2014; 10(3): pp. 202–07,
- 24. S. E. G. Hamrick and G. Hansmann,"Patent ductus arteriosus of the preterm infant," Pediatrics, 2010; 125(5): pp. 1020–30,
- 25. World Health Organization (WHO). Congenital anomalies 2015, <u>http:</u> //www.who.int/mediacentre/factsheets/fs <u>370/ en/</u>.
- 26. Y. Yuan, L. Zhang, L. Jin et al., "Markers of macromolecular oxidative damage in maternal serum and risk of neural tube defects in offspring," Free Radical

Biology and Medicine, 2015; 80: pp. 27–32,

- 27. A. Romo, R. Carceller, and J. Tobajas,
 "Intrauterine growth retardation (IUGR): epidemiology and etiology," Pediatric Endocrinology Reviews, 2009. 6(3): pp. 332–36,
- 28. M. Giuffrè, M. Rizzo, G. Scaturro et al.,
 "Oxidative stress markers at birth: analyses of a neonatal population," Acta Histochemica, 2015. 117(4-5): pp. 486– 91,
- A.-A. M. El-Mazary, R. A. Abdel-Aziz, R. A. Mahmoud, M. A. El-Said, and N. R. Mohammed, "Correlations between maternal and neonatal serum selenium levels in full term neonates with hypoxic ischemic encephalopathy," Italian Journal of Pediatrics, 2015; (41): 83,.
- 30. B. Mukhopadhyay, A. N. Gongopadhyay,
 A. Rani, R. Gavel, and S. P. Mishra,
 "Free radicals and antioxidants status in neonates with congenital malformation," Journal of Indian Association of Pediatric Surgeons, 2015; 20 (4): Pp. 179–83,
- A. Kumar, S. V. Ramakrishna, S. Basu, and G. R. Rao, "Oxidative stress in perinatal asphyxia," Pediatric Neurology, 2008;.38(3): pp. 181–85,

- 32. Z. Hracsko, H. Orvos, Z. Novak, A. Pal, and I. S. Varga, "Evaluation of oxidative stress markers in neonates with intrauterine growth retardation," Redox Report, 2008;13(1): pp. 11–16
- 33. A. C. Cancelier, F. Petronilho, A. Reinke et al., "Inflammatory and oxidative parameters in cord blood as diagnostic of early-onset neonatal sepsis: a casecontrol study," Pediatric Critical Care Medicine, 2009; 10 (4): pp. 467–471,
- 34. G. Lista, M. Colnaghi, F. Castoldi et al.,
 "Impact of targeted-volume ventilation on lung inflammatory response in preterm infants with respiratory distress syndrome (RDS)," Pediatric Pulmonology, 2004; 37(6): pp. 510–514,
- 35. M. L. Tataranno, S. Perrone, and G. Buonocore, "Plasma biomarkers of oxidative stress in neonatal brain injury," Clinics in Perinatology, 2015. 42 (3): pp. 529–39,
- 36. L. Marseglia, G. D'Angelo, M. Manti et al., "Visfatin: new marker of oxidative stress in preterm newborns," International Journal of Immunopathology and Pharmacology, , 2016. 29 (1): pp. 23–29
- 37. N. Nassi, V. Ponziani, M. Becatti, P. Galvan, and G. Donzelli, "Anti-oxidant enzymes and related elements in term and

preterm newborns," Pediatrics International, 2009; 51(2): pp. 183–87,

- 38. G. K. Suresh, J. M. Davis, and R. F. Soll, "Superoxide dismutase for preventing chronic lung disease in mechanically ventilated preterm infants," Cochrane Database of Systematic Reviews, 2001. 1 Article ID CD001968,
- 39. K. D. Beharry, G. B. Valencia, D. R. Lazzaro, and J. V. Aranda, "Pharmacologic interventions for the prevention and treatment of retinopathy of prematurity," Seminars in Perinatology, 2016. 40(3): pp. 189 –202
- 40. G. Belteki, S. L. Kempster, A. J. Forhead et al., "Paraoxonase-3, a putative circulating antioxidant, is systemically up-regulated in late gestation in the fetal rat, sheep, and human," Journal of Clinical Endocrinology and Metabolism, 2010. 95(8): pp. 3798–805
- 41. M. L. Tataranno, S. Perrone, M. Longini, and G. Buonocore, "New antioxidant drugs for neonatal brain injury," Oxidative Medicine and Cellular Longevity, 2015.Article ID 108251, 13 pages,
- 42. C. Poggi and C. Dani, "Antioxidant strategies and respiratory disease of the preterm newborn: an update," Oxidative

Annals of Neonatology Journal 2021; 3(1): 8-23

Medicine and Cellular Longevity, 2014. Article ID 721043, 10 pages,

- 43. Wilke I. Review: Biological and pathological effects of 2.45 GHz radiation on cells, fertility, brain, and behavior. umwelt medizin gesellschaft. 2018; 31 (1) Suppl: 1-32.
- 44. Ö. Çelik, M. C. Kahya, and M. Nazıroğlu, "Oxidative stress of brain and liver is increased by Wi-Fi (2.45 GHz) exposure of rats during pregnancy and the development of newborns," Journal of Chemical Neuroanatomy, 2015.
- 45. Jaffar FHF, Osman K, Ismail NH, Chin KY, Ibrahim SF. Adverse Effects of Wi-Fi Radiation on Male Reproductive System: A Systematic Review. Tohoku J Exp Med. 2019; 248 (3): 169-179. doi: 10.1620/ tjem. 248.169.
- 46. H M Fahmy, F F Mohammed. Hepatic injury induced by radio frequency waves emitted from conventional Wi-Fi devices in Wistar rats. Hum Exp Toxicol. 2020 Aug 7; 960327120946470. doi: 10.1177/ 0960327120946470.
- 47. R. I. Tuxworth, H. Chen, V. Vivancos, N. Carvajal, X. Huang, and G. Tear, "The Batten disease gene CLN3 is required for the response to oxidative stress," Human

Molecular Genetics, 2011; 20(10): Pp. 2037–47

- 48. K. Vande Loock, R. Ciardelli, I. Decordier, G. Plas, D. Haumont, and M. Kirsch-Volders, "Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage," Mutagenesis, 2012._27(5): Pp. 573–80
- 49. Schlinzig, S. Johansson, A. Gunnar, T. Ekström, and M. Norman, "Epigenetic modulation at birth—altered DNA-methylation in white blood cells after Caesarean section," Acta Paediatrica, 2009; 98 (7):Pp. 1096–99
- 50. I. Decordier, K. De Bont, K. De Bock et al., "Genetic susceptibility of newborn daughters to oxidative stress, "Toxicology Letters, 2007; 172 (1-2): Pp. 68–84

Annals of Neonatology Journal 2021; 3(1): 8-23

Submit your next manuscript to Annals of Neonatology Journal and take full advantage of:

- Convenient online submission
- Thorough and rapid peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- No limit as regards tables or figures.
- Open Access research freely available for redistribution

Submit your manuscript at:

www.anj.journals.ekb.eg

Citation: Hosny M.A. El-Masry; Alaa-eldin A.H Mahmoud. "Free Radicals and Antioxidants in

Diseased Neonates". Annals of Neonatology Journal, 2021, 3(1): 9-24 doi: 10.21608/anj.2020.131987 Copyright: Hosny M.A. El-Masry and Alaa-eldin A.H Mahmoud 2020. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY-NC-ND) license (4).

